
Elephant Herd as a Service
Author: Shaun Thomas

Date: September 15th, 2016

Venue: Postgres Open 2016

Your Presenter

Shaun M. Thomas
Database Architect
Peak6

I apologize in advance.

Who is This Guy?!
You may remember me from:

• NVRam for Fun and Profit (PGOpen 2011)

• High Availability with PostgreSQL and Pacemaker (PGOpen 2012)

• Collectd and Graphite: Monitoring PostgreSQL with Style (PGOpen 2014)

• The Bones of Highly Available Postgres (PGOpen 2015)

• Postgres 9 High Availability Cookbook (Packt Publishing)

• PG Phriday (http://planet.postgresql.org)

Page 1

Postgres Open 2016

http://planet.postgresql.org

I practically live at this conference, and no, I have no idea why they keep subjecting everyone to my incoherent rambling.

ElepHaaS: Not What You Think
HaaS != Haas

Sorry to all the Haas groupies!

While the esteemed Robert Haas has contributed a great deal to the Postgres project and community, ElepHaaS is not named after
him. So sorry, Haas groupies! The real reason for the name is much more mundane.

The Problem

• We have 100+ Postgres instances

• Consisting of 40 unique clusters

• Spread over 4 operating environments

• Located in 5 data centers

• Representing 60+TB of data

• Containing 1 partridge and 1 pear tree

Our issue may not be a unique one, but it was certainly pressing. How to manage over 100 Postgres instances with some kind of
semblance of organization. Configuration management tools only go so far, and logging into each server to perform operations
doesn’t scale. Performing DR tests was _especially_ pernicious. Failback was even worse.

How do you even begin addressing that kind of problem?

Page 2

Postgres Open 2016

The Solution
[This space intentionally left blank]

There are no tools to manage such large heterogeneous clusters. The closest tool is probably repmgr, but event that operates on a
per-cluster basis. What happens when you have dozens of clusters? We needed another layer of abstraction to address our use case,
and there just isn’t anything that fits the bill.

So we decided to write one.

What is Postgres?
Our grand mascot

Page 3

Postgres Open 2016

Backing up a bit, we need to name this thing somehow based on how it works. Let’s start with the Postgres mascot itself, the grand
elephant stomping other database engines into dust.

Add Replication
… and his family.

Page 4

Postgres Open 2016

Ever since Postgres acquired streaming replication, this organization became much more ubiquitous. It’s now possible to have a
herd of related Postgres instances. This is also where we begin to encounter potential management complications. Tools like
repmgr simplify wrangling one herd no matter its size, and judicious scripting can probably juggle several.

Unfortunately, we had crossed the “several” label years ago and were starting to feel the pain.

The Solution (Revisited)
ElepHaaS is a service for managing this

Page 5

Postgres Open 2016

Instead of merely addressing a single herd, ElepHaaS can operate on multitudes. Larger organizations which rely on Postgres often
have correspondingly wide architectures. At the very least, dozens of unrelated applications from competing or integrated teams
tend to accumulate over the years.

Regardless, all of these Postgres instances still require maintenance, management, backups, replica rebuilds, DR failovers, and any
number of other tasks. Any one of these jobs would be onerous to perform on a mere 20 servers, let alone 200. Even with scripting,
command broadcasting, and configuration management, there needs to be a central command nexus. So why not fully leverage it
with a GUI wrapper?

What it Does

• View and filter options to focus on specific herds

• Start, stop, restart, or reload any managed instance

• Promote, synchronize, and remaster replicas

• Invoke Disaster Recovery failover—including DNS

• Checkboxes to bulk-apply operations

• Verify dangerous commands before activating

From the second ElepHaaS was born, it was able to start, stop, and promote instances. That was the proof of concept that
determined we should move forward with more features. From there, we started adding filters, search boxes where appropriate, and
other niceties to encourage using the tool in place of ad-hoc management.

Page 6

Postgres Open 2016

Next came replica handling. Promoting a replica is really a different command sent to pg_ctl, so that was easy. Replica rebuilds
required a bit more magic, and this is where the real power of ElepHaaS emerged. Already, we were able to apply bulk operations
to entire constellations of instances and related replicas. Click a few checkboxes, select an operation, and boom!

But merely rebuilding a replica isn’t really enough. Disaster recovery pairs are a common fixture, so we wanted to directly support
them. So we added a menu to explicitly acknowledge DR pairs. Any herd with more than one member is automatically listed, and a
failover automatically chooses the most up-to-date replica. We even added DNS so applications could follow the migration.

This is when ElepHaaS became a true “aaS” piece of software. The server containers where the instances run is not nearly as
important as the data itself. Thus the first release was born.

Intrepid Ingredients

• Postgres

• Django

• SSH keys

• rsync

There are surprisingly few moving parts, here. We obviously need Postgres. Beyond that, Django is notorious for its “free” admin
interface for database models. That makes a perfect rapid application development choice for building a system specifically for
administrating servers.

But how to actually contact and manage those servers? What better than the network glue that is SSH keys? This enabler practically
gives us carte-blanche to run arbitrary commands from a central location. Django can hide the gritty details and simply invoke the
commands on our behalf on any instance we’ve registered, wherever it might reside.

And rsync? It’s still the best synchronization software available on UNIX systems. With our SSH keys in place, we can rebuild
replicas with rsync. Future versions will probably integrate pg_rewind as a first pass to synchronize fewer files when applicable.
Still, it’s a much better choice than pg_basebackup for larger instances.

So, Why Django?
This is the environment model

class Environment(models.Model):
 environment_id = models.AutoField(primary_key=True)
 env_name = models.CharField('Environment Name',
 help_text='Example: dev, stage, prod.',
 max_length=40)
 env_descr = models.TextField('Long Description', max_length=2000)
 created_dt = models.DateField(editable=False)
 modified_dt = models.DateField(editable=False)

 class Meta:
 verbose_name = 'System Environment'
 db_table = 'ele_environment'
 ordering = ['env_name',]

 def __unicode__(self):
 return self.env_name

Page 7

Postgres Open 2016

For those who don’t know what Django is, it’s a Python site development toolkit. One central design motivation is to make sites
that are data-driven, which implies a dependence on some kind of database. That data must be described by a model, and since this
is Python, an ORM goes on top.

That ORM is really what makes Django work. Table rows become Python objects, and the model itself is an abstraction for
fetching various combinations of those objects. As a natural consequence, we gain a lot of related functionality.

Holy Crap!
It looks like a lot, but gives us:

• A table definition for environments

• With a non-default table name

• And invisible auditing columns

• An object for manipulating environments

• Which can fetch all existing environments

• With default ordering

• And a descriptive name

• That can apply arbitrary filters

A _lot_ of related functionality. We’ll be using the base model object all over the scaffolding code. Beyond that convenience, we’re
allowed to override the default table and column names to better fit a traditional database architecture. It’s hard for a DBA to resist
that, right?

The amount of code we wrote and the related ROI is why Django powers ElepHaaS.

Still, Why Django?
This creates an admin menu

class EnvironmentAdmin(admin.ModelAdmin):
 exclude = ('created_dt', 'modified_dt')

admin.site.register(Environment, EnvironmentAdmin)

And that tiny bit of code gives us…

And here is where Django really shines. The model code is much larger than the related admin code. Why? Some very patient
human being wrote an entire harness of libraries that operates upon models, leveraging commonalities inherent to all models. This
means that associating a model with said harness is the ultimate incantation.

Let the menus begin!

Admin Menu: List
View existing environments

Page 8

Postgres Open 2016

Our model is admittedly simple, yet we’re already seeing the benefits. The Django admin suite gives us a basic overview of table
contents, complete with pagination, header sorting, and so on. And why not? It’s all just SQL in the end, and we’re more than
familiar with that.

Admin Menu: Add
Add new environments

Page 9

Postgres Open 2016

Remember that help text we added to the model? Well, there it is! Beyond that, take a look at the menu bar itself and revel in the
comprehensive breadcrumbs. They even facilitate data entry with multiple save options.

Admin Menu: Edit
Modify existing environments

Page 10

Postgres Open 2016

Editing uses the same format as adding, except we can delete from this menu as well. These forms are entirely based on the
datatype we assigned to the model, so there’s a certain consistency to the entire admin system.

Admin Menu: Delete
Verification before deleting

Page 11

Postgres Open 2016

And by default, all deletions trigger a confirmation step that presents us with the consequences of proceeding. Possibly the best part
about all of these menus is that they’re template-driven, meaning we can override any of them. Maybe we want more detailed
confirmation pages, for example.

Pesky Prerequisites

• Django: duh

• Psycopg2: communicate with Postgres

• Paramiko: Python SSH commands

• DNSPython: For DNS migrations

• django-auth-ldap: For (optional) LDAP auth.

ElepHaaS _does_ require a few Python libraries beyond any Django might demand. All of them map directly to functionality
ElepHaaS offers. We need Psycopg to connect to Postgres, Paramiko to invoke remote SSH commands, and DNSPython for DNS
migrations in DR failovers.

In addition, we’ve split the configuration files and included examples for incorporating LDAP authentication. This means anyone
with managed user accounts can integrate ElepHaaS directly into their organization. As long as the necessary Python library is
there, of course.

Take _that_, subspace.

Basic Installation
Start with requirements

pip install django psycopg2 paramiko dnspython

Install the engine

Page 12

Postgres Open 2016

wget https://github.com/peak6/elephaas/archive/v1.0.0.tar.gz
tar -xzf elephaas-1.0.0.tar.gz

Use or modify default config

cd elephaas-1.0.0
mv elephaas/local_settings.example.py elephaas/local_settings.py

There’s no make file or configure script, but we did include packaging for Debian-derived systems, with RHEL on the horizon.
Without that, installation is hardly arduous. Really it just boils down to unpacking the archive and creating one config file.

Get it Running
Initialize the metadata

createdb admin
psql admin -c 'CREATE SCHEMA utility;'

python manage.py migrate
python manage.py createsuperuser

Start the service

python manage.py runserver 0.0.0.0:8000

The commands here assume the default configuration file was used without modification. This means ElepHaaS will store its
metadata in a database named admin in the utility schema. Beyond that, Django uses manage.py as a master command interface to
Django projects. The migrate parameter to manage.py bootstraps all necessary metadata, and createsuperuser allows us to log in. If
we’re not using LDAP, we can add more users from the admin interface itself.

Then we just start the daemon itself. In a real system, we probably wouldn’t use the runserver parameter of manage.py, as that’s
generally reserved for debugging. But it’s perfect for testing things out! There are lots of other more formal ways to run a Django
app.

Link Servers
Set up SSH keys on all managed systems

ssh-keygen -t dsa -N '' -f ~/.ssh/id_dsa
ssh-copy-id postgres@my-cool-server
ssh-copy-id postgres@my-lame-server
ssh-copy-id postgres@my-insane-server

But remember:

• Make sure it’s the user running ElepHaaS

• Use Chef, Puppet, Salt, etc., for best results

Page 13

Postgres Open 2016

Whatever user is running the actual ElepHaaS daemon needs their SSH key on all systems we want to manage. In an ideal world,
we’d do that by generating the key and using some kind of configuration management tool to broadcast that key to all of the
appropriate server and container profiles. But it’s not too difficult to perform this task manually either, and we only need to do it
once.

This is the glue that binds ElepHaaS to all of instances it manages.

Add New Servers
ElepHaaS reminds you of SSH keys

One of the configuration settings in local_settings.py is our public SSH key. When adding a server, ElepHaaS presents this key
just in case the new server doesn’t have it already. We wanted to make sure it was obvious this is how ElepHaaS communicates
with instances on all servers.

Short Demo
Let’s see it in action!

That’s All it Does?!
B-but…

Page 14

Postgres Open 2016

Sadly, yes. ElepHaaS is still relatively young, and thus far, has a grand total of one active developer who still has a day job.
Granted, that job is simplified to a certain extent by ElepHaaS itself, but there are still development velocity limitations.

What ElepHaaS currently does is not _nearly_ enough, but it’s a great start. Everything is on github, and we welcome sane pull
requests.

Future Plans

• More bulk commands

• Additional sidebar filters

• Initialize new instances

• Backup management (pgBackRest!)

• Add menu ACLs

• Plugins?

• See the TODO

This list really could be endless. We have the basic scaffolding for a potentially amazing tool, and it’s already at a point where it
vastly simplifies constellation management. Of course, there’s always room for improvement. Our choice of Python and Django
mean functionality should be relatively easy to add, too.

Well, eventually.

See Also
ele_tools

• Companion python tools for managed hosts

• Currently only ele_report

• Does status reports to ElepHaaS

• Autodiscovery of new instances

• Depends on pg_lsclusters Debian tools

Since ElepHaaS originated on an Ubuntu system, it uses a lot of the Debianisms that environment provides. The pgutil_report tool
performs Postgres instance auto-discovery and transmits everything it finds by injecting it directly into ElepHaaS database
metadata. As a result, the pg_lsclusters utility was the easiest way to “find” Postgres instances on a server.

Page 15

Postgres Open 2016

This tool works best when combined (notice a trend?) with configuration management. Install it on any server with a Postgres
profile, and all instances will automatically populate in ElepHaaS. It’s definitely easier to manage instances when they tattle on
themselves.

But sadly, this tool only works on Debian-based Linux distributions due to its reliance on pg_lsclusters. More comprehensive
detection mechanisms could generalize it so RHEL (or other Linux friends) can also enable autodiscovery. Still, it’s just a
convenience that doesn’t affect ElepHaaS itself, so feel free to ignore it!

More Information

• The Django project

• ElepHaaS on github

• ele_tools on github

• pgBackRest

Questions

Page 16

Postgres Open 2016

https://www.djangoproject.com/
https://github.com/peak6/elephaas/
https://github.com/peak6/ele_tools/
http://www.pgbackrest.org/

	Your Presenter
	Who is This Guy?!
	ElepHaaS: Not What You Think
	The Problem
	The Solution
	What is Postgres?
	Add Replication
	The Solution (Revisited)
	What it Does
	Intrepid Ingredients
	So, Why Django?
	Holy Crap!
	Still, Why Django?
	Admin Menu: List
	Admin Menu: Add
	Admin Menu: Edit
	Admin Menu: Delete
	Pesky Prerequisites
	Basic Installation
	Get it Running
	Link Servers
	Add New Servers
	Short Demo
	That’s All it Does?!
	Future Plans
	See Also
	More Information
	Questions

