The Bones of High Availability

Author: Shaun M. Thomas
Date: September 18th, 2015
Venue: Postgres Open 2015

Your Presenter

Shaun M. Thomas <sthomas@peak6.com>
Database Architect at Peak6 Investments

| apologize in advance.

What is High Availability

PEETEIISSTTEIESSTEISSEEE FSTTEIISSTTETISSTTIISSEE $SSTEIISSTEISSSTE$$SSS
PEEEEIESSTEISSSTEIISSTES SEEIISSTEIISSSEI$SSSEHSS

What is High Availability
(But seriously)

« Staying online in the face of adverse conditions.
* The result of a downtime cost/benefit analysis.

* Doing this can get expensive.
What are Bones?

« Fun fact: you contain a spooky skeleton.

L9 bb\cj

* Let's make one for Postgres!

One is the Loneliest Number

Let's start with one node.

Postgres Open 2015

mailto:sthomas@peak6.com

Data Center

Poor Postgres

Just look at him...

Eggs in One Basket

* You've probably seen one of these...
* Good for development.

« Don't use this for anything important.

Postgres Open 2015

PEAKS

» Backups happen here, too.
» Crash = SOL

* Story time!

Never, ever depend on a single node for anything, anywhere, ever. If that node ever dies, that's the end of
the story, possibly for the entire company.

One of my first large Postgres projects in 2005 was when | was newly hired at a small company. They
didn't have a Postgres DBA and as a consequence, didn't know the full implications of the
max_fsm pages setting. Though that setting has since been deprecated, the default was only 200,000
(at most) back then. That's only enough for 200,000 modified or deleted rows over the entire database
between vacuums!

As a consequence, their database slowly bloated over the course of a year, and was less than a week
away from exhausting the disk on its server. An old, unexpandable server that was already several years
old. There wasn't enough space anywhere to save the data, and it was the data store for all of their
websites. | wrote a script that performed a VACUUM FULL on every table in the database, from smallest
object to largest, to avoid exhausting remaining disk space.

The process could only run for two hours very late at night, requiring several iterations before the entire
system finally reached its optimal size. This required multiple maintenance windows over the course of the
week, but the alternative was much worse. If there was even a second server, this could have been
avoided.

Two Can Be as Bad as One

Let's move the backups and WAL archives to prevent disaster.

Data Center

PG

—_—

But backups need to be restored...

Keep in mind that this only prevents us from losing the backups. If the database node goes down, we still
have to restore the data somewhere and get it running again. This is better than only having the database
node, but just barely.

Learn About ABE

No, not that Abe!
©

ABE: Always Backup Elsewhere

1. Backups must exist.

2. Assume the database node can die.

Postgres Open 2015

3. Use a shared or dedicated backup server.

4. Goto 1.

If the machine where the database runs is the only location where backups are held, there are no
backups. Local backups are fine for PITR only, in the case the instance fails for some reason.

Since it's very unlikely the database server is the only server in the data center, use one of the other
available systems to store Postgres backup files. This can be a shared system where multiple services
transmit backup files before it gets captured to tape.

No matter the situation, follow the ABE principle.

Three Cheers for... ?

Staying online!

Data Center

PG

Three Amigos

* Our first viable HA cluster!
» Many options
* Built-in replication
« Slony, Bucardo, Londiste
* DRBD
» Pacemaker

« etcd + HAProxy
» Same or better hardware!

This is the first point where we actually have something we can genuinely call a highly-available database.
If one node is ever damaged or in need of maintenance, we can always use the other.

To reach this point, we can use the extremely comprehensive replication included with Postgres, a
higher-level trigger-based logical process, or some kind of underlying block-level method. The first of
these is very easy to establish, while the second usually requires a bit of experience and is best for select
tables.

The third option is where things get more complicated, but it also gives us the capability to circumvent
Postgres entirely. If we use something like DRBD, the two nodes involved in the cluster will be
byte-for-byte identical at all times, with much less transactional overhead and associated latency.

Regardless of the synchronization method we use between these two servers, we'll want some way to
automate switching between them. One popular method relies on a Pacemaker stack. Others might prefer

Postgres Open 2015

This is the bare minimum for a HA cluster: two nodes for the active database, and one node for backups.
And keep in mind that the secondary server has to be at least the same specification as the primary, or we
risk problems after failing over. If it's a better server, we can use it for in-place upgrades, assuming the
primary gets a similar bump in capabilities after the maintenance is over.

One for the Road

Backups... are safer elsewhere.

Two for the Road?

Offsite replicas are also nice.

Postgres Open 2015

PEAK®&

But why?

Moving backups and replicas off-site protects the database from catastrophic data loss in the event the
data center itself suffers some kind of damage or becomes unreachable. Here are a few fun examples!

Backhoes!
The #1 predator of The Internet!

It's an inside joke, but there's a kernel of truth here. Backups should be available from more than one
location in case the connection to one gets... interrupted.

Floods!

Was your data center in lowa?

Postgres Open 2015
PEAK®&

| know my servers always run better when immersed in the Mississippi river.

To be serious for a moment, this can't be overstated. In the case of a natural disaster such as a flood,
servers and data at a single location might be a total loss. If data is located externally, we can eventually
bring the system up again.

Without this, a site outage may become permanent.

Shit Happens

Remember Murphy's Law.

€O

-

This really should set the tone for the rest of this talk. You can't be taken by surprise if you're always
expecting something to fail.

Also, that guy is way too happy about ruining our day.

What's Missing

.. No.

Postgres Open 2015
PEAKGS

Five Golden ... Servers!

Keep Postgres running everywhere!

Data Center

Data Center

This is your foundation.

Postgres Open 2015
PEAKGS

Having an offsite backup makes it possible to restore that backup to another server, and make that server
an active member of our availability architecture. Depending on the utilization of that other data center,
this may or may not be a lot more expensive than keeping a simple backup server at that location. But if
we want to stay up in the case of a data center outage, it's a requirement.

True Disaster Recovery

» Have an off-site Postgres server.

« Preferably the same hardware
« Warm/hot standby

* Lots of data for WAL stream
 Things are starting to get expensive.

* And complicated...

* Promote
* DNS

* Etc.
Earlier, we needed three servers to claim we were highly available. Now, we need at least four to have a
Disaster Recovery setup. Now, things are starting to get serious. Simply using another data center can be
expensive, but now we're also allocating a running---but mostly idle---server. In many cases, this extra
server can be a cut-down version of our main setup. If we're running in our alternative location, we
probably have more to worry about than a few slow queries.

But it's still an expense to consider. Getting the data there can also be a problem, depending on how
much volume comes through our primary server. Using warm or hot standby, we will still have WAL traffic
to contend with. If we're depending on WAL files to catch up in the case of a long connection interruption,
that's traffic for both streams. So now we have bandwidth costs to go along with the server space and

power delivery.

Beyond that, we have to direct traffic to the new server in case of emergency. That means reconfiguring
and restarting applications, connection pools, name resolution, or whatever is necessary to activate the
remote systems. In a perfect world, all of this is automated and well tested, but we all know the reality of
that scenario.

Also, five servers is a lot.

Fifth Wheel

Remember this guy?

Postgres Open 2015

Now that we have a fifth server that's acting as emergency outage insurance, we have a similar situation
as we started with: one very sad server.

Failure is Always an Option

How much do we depend on our DR setup?

Postgres Open 2015
PEAKGS

Data Center

Data Center

Sometimes the answer is "a lot."

Cast a Hex

« If we expect to need DR long-term.

* Moving the primary data center.

« Persistent primary outage.
 Retain old hardware for ICE uses.

When do we need that sixth server? This is getting a bit ridiculous, isn't it? We already had one mostly idle
server in the DR environment, and now we have two? Why?

It could be seen as a stretch, but it's not unknown to move servers from one location to another. While
doing so, however long that process takes, we need a secondary set of servers that can fill in at the same
capacity as the servers we're moving. In the same basic configuration. Otherwise, we run the risk of a
hardware failure in the DR environment while we're operating on limited resources. And there's always the
risk of natural disaster. If we're on the East coast, and a hurricane eliminates our primary data center, we
could be running on DR systems for months. How avidly do we want our website to remain online?

Beyond that, it's possible the DR hardware is a hand-me-down from previous upgrades of the primary
servers. In that case, retaining the original pair for DR use is simply a matter of convenience. Whatever
the reason, think through potential failure scenarios, and have a working checklist of elements necessary
to weather outages of various description. If one of those situations calls for another server in the DR
environment, it's better to have one than need one.

All's Well that Ends Well

Hooray!

Postgres Open 2015
PEAKGS

We can dream, anyway.

You're Kidding Me

Hi!

| hate you!
Sigh.

6o

Everything is Synchronized

Think about that for a second.

HI, THIS 1S

YOUR SON SCHOOL.
WERE HAVING SOME
COMPUTER TROUBLE.

\%W

OH, DEAR — DID HE
BREAK SOMETHING?

IN HWHY /

bt

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-- 7

!

~OH.YES UTTLE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEAR'S STUDENT RECORDS.
T HOPE YOURE HAPPY.

{

AND I HOPE
~~ YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS.

We have four servers that all have the same data within a few milliseconds of each other. What could go

wrong?!

When the Worst Happens

Have a delayed replical

PEAKS

Postgres Open 2015

Data Center

Ll

Data Center

5 =

Restoring backups is slow. If bad data, a corrupt table, or an unintended DELETE statement hit the main
server, it'll be faithfully replicated everywhere. We need an answer for that.

Have a Backup Plan

e recovery_min_apply_delay (9.4+)
* Goes well with (9.1+):

* pg_xlog_replay_pause()
* pg_xlog_replay_resume()
* Previously, this was fairly convoluted.

The recovery_min_apply_delay setting allows us to insert a delay into the standard Postgres replication
stream that prevents immediate replay. This gives us the ability to do quite a few things:

« Obtain data that was accidentally deleted.
« Preserve data that was corrupted.

« Switch to PITR and roll forward to just before hardware corruption.

Really, the list goes on. In any scenario where we need untainted data for any reason, a time-delayed
server can fulfill that requirement. Provided, of course, the chosen delay is sufficient for emergency
escalation and response times. An hour or two is usually enough, but always consider how quickly
automated and manual checks take to recognize various issues.

Once a problem is recognized, the immediate reaction should be to pause replication on this delayed
server with pg_xlog_replay_pause. From there, the server can be treated as any normal standby system
without the risk of it being affected by whatever calamity befell the other systems. This gives us time to
react, and in emergencies, that's a rare commodity indeed.

Postgres Open 2015
PEAKGS

Before the recovery_min_apply delay setting, the only alternative was to keep a server separated from
the main replication systems, and rely on WAL-file transmission. It's pretty easy to script a find command
that maintains a specific time interval for relevant WAL files, but this is a lot more reliable.

And Be Paranoid

» New Postgres 9.5 feature:

 archive_mode = always
Depending on how paranoid you are, there's also the option of saving WAL archives on every server
involved in a replication stream. This is especially helpful because it removes archive_command from the
chain of custody when preserving WAL files remotely. We no longer have to worry if it's doing the job

properly.
If you weren't at PGCon this year, we had a very sobering conversation about this.

Or Suffer The Consequences

Imagine this:

« Everything in the 6-server stack!

» Hardware upgrade! Yay!

« DRBD bug causes subtle data corruption.

* For an hour.

« Corruption is faithfully consumed by secondary.
* And DR.

» And the DR secondary.

 Oh...

Use the Tools Provided

» Data checksums

« Only available during initdb.
« Needs dump/restore for existing data.
* pg_rewind (9.5+)

« Replica primary switching is now built-in.

More Information

« High Availability, Load Balancing, and Replication
* Replication

* recovery.conf

* DRBD

* Slony-I

* Bucardo

Postgres Open 2015

http://www.postgresql.org/docs/9.4/static/high-availability.html
http://www.postgresql.org/docs/9.4/static/runtime-config-replication.html
http://www.postgresql.org/docs/9.4/static/recovery-config.html
http://drbd.linbit.com/
http://slony.info/
https://bucardo.org/wiki/Bucardo

* Londiste

» Pacemaker

* repmgr

* etcd

* HAProxy
 recovery_min_apply_delay

» --data-checksums

Questions

Postgres Open 2015

https://wiki.postgresql.org/wiki/Londiste_Tutorial
http://clusterlabs.org/pacemaker.html
http://www.repmgr.org/
https://github.com/coreos/etcd
http://www.haproxy.org/
http://www.postgresql.org/docs/9.4/static/standby-settings.html
http://www.postgresql.org/docs/9.3/static/app-initdb.html#APP-INITDB-DATA-CHECKSUMS

	Your Presenter
	What is High Availability
	What is High Availability
	What are Bones?
	One is the Loneliest Number
	Poor Postgres
	Eggs in One Basket
	Two Can Be as Bad as One
	Learn About ABE
	ABE: Always Backup Elsewhere
	Three Cheers for... ?
	Three Amigos
	One for the Road
	Two for the Road?
	Backhoes!
	Floods!
	Shit Happens
	What's Missing
	Five Golden ... Servers!
	True Disaster Recovery
	Fifth Wheel
	Failure is Always an Option
	Cast a Hex
	All's Well that Ends Well
	You're Kidding Me
	Everything is Synchronized
	When the Worst Happens
	Have a Backup Plan
	And Be Paranoid
	Or Suffer The Consequences
	Use the Tools Provided
	More Information
	Questions

