
Deep Database Dive
Author: Shaun Thomas

Date: November 28th, 2016

Venue: Database Design and Management

Your Presenter

Shaun M. Thomas
Database Architect
Peak6 Investments

I apologize in advance.

Who is This Guy?!

• DBA since 2001

• Presented at Postgres Open 2011-2016

• Postgres 9 High Availability Cookbook

• PG Phriday (http://planet.postgresql.org)

While I tend to work exclusively with PostgreSQL, database modeling, scaling, and high availabilty considerations are universal
concepts. In many ways, MySQL is just another database.

Page 1

http://planet.postgresql.org

In The Field
Biggest problems we face:

• Workload

• Accumulation

• Security

• Distribution

Look familiar?

WASD

WASD isn’t just for playing games! To be fair, I stretched to make this acronym; it’s not actually used anywhere in industry.
There’s a first time for everything, though!

Workload
Usually looks like this

This really is just a subset of all access vectors. A good design will have to account for all of these.

Accumulation
This is our data.

Page 2

Just throw it on the pile!

This isn’t much of a stretch from the truth. I’ve seen databases exceed 50TB because they’re just gathering data from multiple
sources for all eternity. The trick is making the pile usable.

Security

• Hackers

• Encryption

• Privileges

• History

Good designs account for security, too. What data should be accessible, and to who? What grants should be baked into system?
Should we include stored procedures to capture DML activity into auditing logs? Do we need double-bookkeeping? How much
encryption do we need? All questions that need answers, even if the answers is “don’t worry about it.”

Distribution
Where to put our pile?

Page 3

Do we care if everything is in one gargantuan heap, or should we spend some time adapting the design so it can account for
distribution or sharding techniques?

Let’s Make Something!
Oh boy…

A voting system is topical, and we all know how it works. Hopefully.

How are Elections Done?
Things we need

• Elections

• Candidates

• Voters

• Votes

These are the essential elements of an election. We can not proceed without them, even in a fake, simulated system.

Election Extras
Nice data to have

• Districts

• Polling places

• Parties

Page 4

We can include a few extra data elements that help describe the election and its components. Again, this isn’t a real system, and
we’re operating at a fairly high level. There’s usually a lot more involved than this.

Basic Diagram
Let’s start here

This is the initial diagram. Voters can be associated with a party. Voters are assigned a polling place, and that polling place exists
within a specific voting district. Elections do not represent every item on the ballot, just each individual item. We’re not accounting
for ballots in our voting engine. We can simulate ballots by holding multiple simultaneous elections with individual names.

Voters may spend their vote on a specific candidate / initiative for each election. Remember, we’re keeping it simple.

Early Problem

• Find the district of a vote.

• Three joins!

• Let’s denormalize a bit.

We need to get the district for a particular vote to represent data by region, but that takes three joins. Eww. Let’s fix that, at least.

Iterative Design
That’s better!

Notice anything else? Technically we should have a “person” table, because a candidate can also be a voter. However, our
candidate can really be a ballot initiative, a local tax, or voter-supplied write-in, or anything else. In that case, our model is actually
more correct, though perhaps in that case, we should ensure party_id is optional, as not all elections have a party association.

This doesn’t apply to candidates though, as unaffiliated candidates would list “Independent” as their party.

Page 5

A Challenger Appears
Remember WASD!

• W: What are the access vectors?

• A: How much data are we gathering?

• S: How do we lock it down?

• D: Where do we put all of this data?

Let’s answer these questions.

WASD is our friend, here. The scalability of the design must account for responsiveness, or we might as well be using paper
ballots.

Workload: Access Vectors
These are our actors:

• Voters (application)

• Results (application)

• Auditing (users)

• ETL (scripts)

• Backups (maintenance)

There’s a lot going on, and that means the database will be busy wherever it is. The model, permissions, indexes, and hardware
need to account for all of these, and perhaps more.

Accumulation: Data Volume
What’s our scale?

• Thousands of cities

• Thousands of counties

• Millions of voters

• Dozens of initiatives (elections)

Data will build up quickly! Just one presidental election will represent over 120M rows entering our system in one single day. If
even 10 other items sit on a single ballot, it’s really over one billion.

Security: Hack n’ Slash
Strictly control access!

Page 6

• Read-only wherever possible

• WORM model (no update or delete)

• Double-bookkeeping

• Encrypted connections

• Encrypted storage

• Etc.

Lots of security concepts to consider. The database should effectively only allow writes. No updates or deletes anywhere. Further,
only certain access vectors should be able to write at all. Everything should be encrypted to prevent vote buying. All writes to the
database should go to two independent systems for auditing purposes. The connections between the application and the database,
and the database and replicas should all be encrypted.

This is just on the database side! There’s likely a VPN involved and other infrastructure-based tricks to lock down everything.
Gotta keep out malicious users!

Distribution
Responsiveness matters!

• Semi real-time results

• Too big for one system

• Metadata is relatively small

• Votes should be sharded

Can we really build and design a system to handle millions of users over thousands of cites and polling places and see results as
they arrive? Multiply that by dozens of items on the ballot, and we have a slight scaling problem if we try and dump all of this into
a single server.

Candidates, districts, polling places, the elections themselves, are all metadata that will total less than a million rows even over the
course of several years. It’s the voters and their votes that are our main concern; those need relocation.

The Real Model
Architecture isn’t just for buildings

The model we’ve built will be implemented at a local level. Consider that voters and votes are represented by their local district. If
we have a single database at each district, local results are handled immediately. Regional and national elections can invoke queries
from downstream systems and present cumulative results. This makes our system naturally sharded, as each “node” can operate
independently, but it’s possible to combine data without much effort.

How Does it Work?

Page 7

• Polling places collect data twice

• District systems act as aggregators

• Top-level accumulator can only read

• Audit systems only readable locally

• Massively parallel operation

• Districts are proportional

There’s a lot more going on than in this diagram, of course. The point is that the metadata tables exists on every system, while
votes and voters are isolated by district.

How Do We Use It?

1. Shard by shard

2. The accumulator

3. ETL-maintained fact tables

As users of these systems, we would have three approaches to use this data:

1. Obtain totals from a single shard. Basically each district has direct access to its own voting data.

2. Instruct the accumulator to aggregate from all shards at once. Or state-level accumulators can target their subset of district
data.

3. Browse fact tables maintained via ETL during the election.

This includes the audit data, of course.

About Those Shards…
Where to add indexes?

There’s the primary diagram again. Take a good look.

Index Selection
What makes a good indexable column?

Page 8

• High cardinality

• Frequently used predicates

• Foreign identifiers (implicit predicates)

Indexes depend on high cardinality data and careful predicate analysis. The primary key (id) fields are obvious, but what else?
Foreign keys are a good start for JOINs because they essentially add further predicates.

Cult of Cardinality
The basics:

• The amount of elements in a set

• More mean fewer rows match

• Less rows = less processing

• Less processing = faster results

What his basically boils down to, is that we want to index fields that have a lot of distinct values. Ideally, this would mean a 1-1
ratio between row count and distinct values. This is why primary keys provide the best performance. The more canddiates we can
eliminate early, the fewer rows the database needs to aggregate or return.

JOIN-tastic
Consider this JOIN:

SELECT d.city, count(*)
 FROM district d
 JOIN vote v ON (v.district_id = d.id)
 WHERE d.state = 'IL'
 GROUP BY d.city;

It’s really this to the query planner:

SELECT d.city, count(*)
 FROM district d, vote v
 WHERE d.state = 'IL'
 AND v.district_id = d.id
 GROUP BY d.city;

This is what we mean by implicit predicates. We build indexes based on high frequency predicates, and table joins are very relevant
to that decision process. From the implied WHERE clause, we can see that there should be an index on the district_id column in
the vote table.

Back to the Indexes
This would be our starting list:

• election.name

• candidate.name

Page 9

• district.city, district.state

• party.name

• voter.name

• polling_place.district_id

• vote.*

We really do need all separate indexes on the columns in the vote table. Approach vector matters. We could justify all of these
scenarios:

• Use the voter’s ID code to quickly verify their vote was cast.

• Look up all information for a particular election.

• Gather votes for all elections a particular candidate has participated in.

• Find votes by city or state by district.

Each of these focuses on a different result set with distinct cardinality and thus separate indexing needs.

Where Am I?
This query needs no extra indexes:

SELECT p.address, d.city, d.state
 FROM voter v
 JOIN polling_place p ON (v.polling_place_id = p.id)
 JOIN district d ON (p.district_id = d.id)
 WHERE v.name = 'AXGY-2349-OODY-4271';

But this needs one on district_id:

SELECT p.address, d.city, d.state
 FROM district d
 JOIN polling_place p ON (p.district_id = d.id)
 WHERE d.state = 'IL';

Some JOINs are only descriptive. We already have the IDs from the original row set, we’re just fetching from the referenced table
to translate them. On the other hand, doing the lookup “backwards”, means we have a list of primary district IDs and want a list of
all polling places that use those values. See the difference?

The Bigger Picture
Remember the accumulator?

• Not your problem!

• Some application-level voodoo

• Basically does what we do, all at once

• Probably only cares about vote.election_id

Page 10

The job of the accumulator is to aggregate from all shards, or some subset based on region. It’s for global inquiries and its
implementation details don’t concern us. Hooray! But we have to know it exists in order to choose the best index candidates with
the knowledge it will be likely sending a lot of generic aggregate queries that aren’t very selective.

Say news crews use it for real-time national results. That usually means election_id is the only WHERE clause that’ll come down
the pipeline.

Reports by Design
Global ad-hoc is bad!

• We need pre-aggregated summaries

• They should be maintained

• That means Extract Transform Load scripts

• Make the accumulator faster!

Knowing the accumulator is around means we need to precalculate some of the aggregates it fetches most often. Otherwise we’ll be
reading high percentages of our local tables as often as users invoke the accumulator. That’s abusive and slow.

Search the Stars
Here’s a simple star schema:

This is a basic set of fact tables commonly referred to as a star schema.

What’s a Star Schema
Glad you asked!

• Several dimensions

• Extremely denormalized

• One aggregate “Fact” table at the center

• Orders of magnitude fewer rows

A star schema is generally a single aggregate table of “facts” surrounded by several dimensions. Each dimension fully describes the
subject matter to a degree possibly greater than the original data. That information is then referenced by the fact table by the
primary IDs with one or more cumulative totals that are the actual data points we’re interested in.

As a consequence of this pre-aggregated design, instead of millions of rows per election, we may have a few thousand depending
on how many districts are represented. If the accumulator has access to this, it doesn’t need to query all of the shards all the time. In
fact with the right design and implementation, we might not need the accumulator at all.

Page 11

Finding Facts
Let’s get the results for all elections in 2016 by state:

SELECT e.election_name, c.candidate_name, d.state,
 sum(v.vote_total) AS votes
 FROM fact_vote v
 JOIN dim_election e USING (vote_id)
 JOIN dim_candidate c USING (candidate_id)
 JOIN dim_district d USING (district_id)
 WHERE e.year = 2016
 GROUP BY e.election_name, c.candidate_name, d.state
 ORDER BY e.election_name, votes DESC;

Yes, each fact table column is indexed.

While fact tables are already aggregated, they’re aggregated at the granularity of our chosen dimensions. We still need to
summarize them if we leave any dimensions out. Otherwise, we know literally nothing about the fact table, as it’s not even really a
table, but a collection of facts related to the dimensions themselves. So our WHERE clauses target the dimensions and the JOIN
takes care of the rest.

Still Too Slow!
And yet, fact tables still need further aggregation

Imagine if we didn’t have an election, but market tick data. Each tick represents tens of thousands of transactions, and there are tens
of thousands of ticks per day. A single year represents multiple TB of data. Even reduced to fact tables, access can be pretty slow.

There are further tricks up our sleeves.

Material Grill
Materialized views to the rescue.

• Static star-schema snapshot

• Completely flattens all common columns

• Allows further indexing

• Regular refreshes required

If we take all rows from all dimensions joined against the fact table, that might be one way to consider the data. That’s a
completely “flat” and clearly denormalized view of the data. It’s literally the fastest way to get to the data, especially if common
columns are indexed. There are no lookups beyond the initial match and filter steps, just results.

Page 12

Matviews in Practice
MySQL doesn’t support Mat views. Instead:

CREATE TABLE mv_election_flat AS
SELECT e.year, e.election_name, c.candidate_name, d.state,
 sum(v.vote_total) AS votes
 FROM fact_vote v
 JOIN dim_election e USING (vote_id)
 JOIN dim_candidate c USING (candidate_id)
 JOIN dim_district d USING (district_id)
 GROUP BY e.year, e.election_name, c.candidate_name, d.state
 ORDER BY e.year e.election_name, votes DESC;

CREATE INDEX idx_flat_election_name
 ON mv_election_flat (election_name);

CREATE INDEX idx_flat_state
 ON mv_election_flat (state);

Now we can get our results per state from this view, which is much smaller than even the fact table it’s based on. Nice, eh?

More Information

• Cardinality

• Extract, Transform, Load

• Fact Tables

Questions

Page 13

https://en.wikipedia.org/wiki/Cardinality/
https://en.wikipedia.org/wiki/Extract,_transform,_load/
https://en.wikipedia.org/wiki/Fact_table/

	Your Presenter
	Who is This Guy?!
	In The Field
	Workload
	Accumulation
	Security
	Distribution
	Let’s Make Something!
	How are Elections Done?
	Election Extras
	Basic Diagram
	Early Problem
	Iterative Design
	A Challenger Appears
	Workload: Access Vectors
	Accumulation: Data Volume
	Security: Hack n’ Slash
	Distribution
	The Real Model
	How Does it Work?
	How Do We Use It?
	About Those Shards…
	Index Selection
	Cult of Cardinality
	JOIN-tastic
	Back to the Indexes
	Where Am I?
	The Bigger Picture
	Reports by Design
	Search the Stars
	What’s a Star Schema
	Finding Facts
	Still Too Slow!
	Material Grill
	Matviews in Practice
	More Information
	Questions

